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Abstract--When the skeletal outline of quartz c-axis fabrics is not clearly established, some testing procedures 
can be defined to attempt to verify the symmetry of the c-axis intensity distribution with respect to certain 
external reference axes (usually the principal axes of the finite strain ellipsoid). In this paper we propose a 
numerical method to describe that external asymmetry. Taking into account symmetry principles, a series of 
simplifications from the initial spherical distributions of axial poles to a final linear data distribution must be 
assumed. Two different parameters are derived: the external asymmetry factor, Am, upon which a test of 
external symmetry is established, and the statistical obliquity angle, af. The coupled use of both (Am and % ) on 
non-isotropic fabrics is thought to be a reliable new kinematic criterion. This is shown by the analysis of a number 
of experimental, natural and theoretical quartz c-axis fabrics taken from the literature, where dextral shear 
senses imply almost invariably positive af angles for asymmetric fabrics. The method proposed here may also 
allow a quick numerical comparison of fabrics from different regions or sources. 

NOMENCLATURE 

Am factor of external asymmetry of a quartz c-axis fabric 
Amc critical value of Am for the test of asymmetry 
C statistic of strength of a fabric (Woodcock & Naylor 1983) 
D parameter of amount of deformation (Ramsay & Huber 1983) 
I statistic of intensity of a fabric (Lisle 1985) 
K shape of the ellipsoid representing an orientation tensor 

(Woodcock & Naylor 1983) 
n sample size 
S distance from the graph origin of a given point (orientation 

tensor) in the Woodcock diagram 
Sam standard deviation of Am 
S u statistic of uniformity of a fabric (Mardia 1972) 
Si (i = 1, 2, 3) normalized eigenvalues of the orientation tensor 

of a fabric 
t,a 2 value of the t distribution for a given level of significance a 
V i (i = 1, 2, 3) eigenvectors of the orientation tensor of a fabric 
XYZ principal axes of the finite strain ellipsoid 
a level of significance 
af angle of statistical obliquity 
), shear strain 
~6 acute angle between a given quartz c-axis and the X-axis of 

finite strain 
~p angle of external fabric asymmetry (Law 1987) 

INTRODUCTION 

SINCE the first published quartz c-axis fabric diagram by 
Schmidt (1925), a large and growing number of studies 
deal with the crystallographic preferred orientation 
(CPO) of quartz aggregates. Special emphasis was 
placed on this field after the theoretical models pre- 

sented by Lister and co-workers (e.g. Lister et al. 1978, 
Lister & Paterson 1979, Lister & Hobbs 1980) and by 
Etchecopar (1977). Recently, theoretical work (e.g. 
Etchecopar & Vasseur 1987, Jessel11988a,b, Wenk et al. 

1989), experimental research (e.g. Tullis et al. 1973, 
Tullis 1977, Dell'Angelo & Tuilis 1986, 1989, Ralser 
1990, Raiser et al. 1991) and studies of naturally de- 
formed rocks (see reviews in Price 1985 and Schmid & 
Casey 1986) have demonstrated the utility of quartz 
fabrics in the analysis of strain symmetry, in the determi- 
nation of palaeostresses or active slip systems, and 
finally as a shear-sense criterion in ductile shear zones 
(for a review see Law 1990). A number of controversies 
arose in attempts to develop each of these topics. From a 
theoretical point of view, many of these controversies 
are a consequence of the so-called inverse problem of 
fabrics (Lister & Price 1978, Schmid & Casey 1986), that 
is, the fact that knowledge of the final result--the 
fabric---does not allow complete determination of all the 
factors (including the intrinsic and the extrinsic factors 
of Hobbs 1985) that contributed to its development. 

The use of CPOs as kinematic indicators in ductile 
shear zones has received considerable attention during 
the last two decades. With respect to the study of quartz 
c-axis fabrics, two different kinematic criteria have been 
proposed: the first is based on pole-figure topology, and 
rests on the symmetry of the skeletal outline or on the 
leading edge principle (Lister & Williams 1979, Lister & 
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Hobbs 1980, Behrmann & Platt 1982); the second pays 
attention to the asymmetrical intensity of the c-axis pole 
distribution (e.g. Laurent  & Etchecopar 1976, Bouchez 
& P6cher 1976, 1981, Bouchez 1977). Some of the risks 
related to these methods have been pointed out by 
Garcia Celma (1982), Bouchez et al. (1983), Passchier 
(1983), Simpson & Schmid (1983) and Law (1990). 

When the skeletal outline definition is unequivocal, it 
is possible to measure a set of angular parameters that 
allow the c-axis fabric asymmetry to be quantified. Some 
of these angles can be measured with respect to axes 
belonging to an external framework; others are estab- 
lished in terms of internal axes of the fabric. They are the 
external and internal symmetry parameters,  respect- 
ively (Behrmann & Platt 1982, Platt & Behrmann 1986). 
The notation and geometrical meaning of these para- 
meters differ between authors (cf. Simpson 1980, Behr- 
mann & Platt 1982, Law 1987, Mancktelow 1987). 

The skeletal outline of a fabric is not always easy to 
obtain (Simpson & Schmid 1983). If this is the case it 
could be useful to define some independent parameter,  
based on the asymmetry of the distribution intensity. 
When such a parameter  is statistically established, it is 
possible to control the errors concerning the symmetry 
estimation. This could also allow the comparison of 
fabrics with different origins. 

In this paper we propose a number of statistical 
parameters that provide a numerical evaluation of the 
intensity of the external asymmetry via a decision test. 
The viability of the method has been checked using 
several natural, experimental and theoretical quartz c- 
axis fabrics derived from the recent literature. 

THE METHOD 

Theoretical considerations 

Following Bunge (1985) the complete description of a 
fabric is not practical as it implies an exact knowledge of 
the compositional nature and crystal orientation for 
each point in the aggregate. Instead of that, it is more 
convenient to give a partial statistical characterization of 
the fabric. In accordance with the Curie symmetry 
principle, convincingly applied to geology by Paterson & 
Weiss (1961), the symmetry of a crystallographic fabric 
is a consequence and a key for the inference of the 
imposed deformation path symmetry, provided that the 
original crystallographic fabric can be considered as 
statistically isotropic and that the kinematic description 
of the deformation remains constant (Lister & Hobbs 
1980). Deformation mechanisms have no influence 
upon the validity of this assumption (Wenk & Christie 
1991 ), and therefore it is expected to be of great interest 
in structural geology. It constitutes the theoretical basis 
for the use of quartz c-axis pole figures as a kinematic 
criterion (Wenk & Christie 1991). 

Strictly speaking a c-axis pole figure is only a sub- 
fabric of the whole crystallographic fabric. It is usually 
preferable to obtain more complete statistical descrip- 

tions, such as the orientation distribution function 
(ODF; Bunge 1969, Schmid et al. 1981) that consists of a 
mathematical combination of several sub-fabrics. How- 
ever, when the technical and mathematical facilities 
required to establish an ODF are not readily available, 
the structural geologist must rely upon the analysis of 
single sub-fabrics. 

Note that following the Curie principle the symmetry 
of a whole fabric can be equal or less, but never greater 
than that shown by the sub-fabric of a particular element 
(Turner & Weiss 1963). Therefore,  symmetric quartz c- 
axis sub-fabrics can belong to an asymmetric whole 
fabric, and this was shown in several studies of natural 
quartz aggregates (e.g. Schmid & Casey 1986, Law 
1987). Assuming an originally isotropic CPO, we should 
conclude that asymmetric quartz c-axis fabrics imply 
non-coaxial deformational histories, while symmetric c- 
axis fabrics do not imply necessarily coaxial deformation 
histories (e.g. Schmid & Casey 1986). 

When attempting to analyse the sub-fabric of a crys- 
tallographic element as for example the c-axes in quartz, 
it is advisable to establish beforehand the pole or intrin- 
sic symmetry of that element (Weiss & Wenk 1985). The 
pole symmetry depends on the point group of the crys- 
talline structure. For instance, in quartz, whose point 
group is 32, the c-axes are located in coincidence with 
the three-fold rotation axes. Taking into account the 
enantiomorphic character of the quartz crystallographic 
lattice, the c-axes are defined as axial chiral directions 
(Weiss & Wenk 1985). The axial character explains the 
fact that only one hemisphere suffices to represent their 
distribution in a spherical projection. On the other hand, 
the right- or left-handed chiral character of single crys- 
tals is seldom determined in the study of quartz aggre- 
gates. That implies that the c-axis pole figures must be 
considered as a combination of data with two possible 
chiral senses. 

Finally, when considering a polycrystalline aggregate 
the pole distribution is largely independent of the lattice 
symmetry. In the case of quartz, the c-axes are centro- 
symmetric elements, and then the symmetry of aggre- 
gates consists of only five different point groups 
(Paterson & Weiss 1961, Weiss & Wenk 1985): spherical 
or isotropic (w/m z / m ) ,  axisymmetric (oc/m 2/m), 
orthorhombic (2/m 2/m 2/m), monoclinic (2/m) and 
triclinic (]); where ~ '  and "2" are proper rotation, 'm' 
mirror planes and ']-' a center of symmetry. Considering 
a situation of statistical homogeneity, the five point 
groups could be transformed in space groups by means 
of arbitrary translations in all the spatial directions 
(Paterson & Weiss 1961). From a geological point of 
view, the isotropic point group corresponds to sub- 
fabrics without crystallographic preferred orientation. 
The axisymmetric and orthorhombic point groups could 
be ascribed to the broader and more diffuse class of 
symmetric sub-fabrics; and the monoclinic and triclinic 
groups would be associated with asymmetric sub- 
fabrics. 

In short, the quartz c-axis sub-fabrics are partial 
statistical descriptions, easy to obtain by optical 
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methods and to represent in conventional hemispherical 
projections, and are promising as a kinematic criterion 
when symmetry principles are considered. In the follow- 
ing sub-sections we will review the statistical procedures 
to evaluate the isotropy of a pole figure, and then we will 
propose a method to determine the degree of asymmetry 
for a non-isotropic sub-fabric. 

lsotropy and strength 

Fabrics derived from undeformed rocks in nature are 
not truly isotropic, but they are statistically isotropic. 
During deformation processes a significant deviation 
from that isotropy is usually achieved. In order to define 
the isotropic character of fabrics several procedures 
have been developed. The more suitable of them are 
based on the computation of the eigenvalues of the 
orientation tensor divided by the sample size (normal- 
ized): S i, i = 1,2,3 (Scheidegger 1965). The following 
tests attempt to elucidate the isotropy on that ground. 

(1) A randomness non-parametric test suggested by 
Woodcock & Naylor (1983). The parameter C is esti- 
mated in terms of the maximum (S1) and minimum ($3) 
normalized eigenvalues of the orientation tensor: 

C = In ($1/$3). (1) 

Critical values of C separate the isotropic from the 
non-isotropic fabrics. 

(2) A parametric test based on the Bingham distri- 
bution, proposed by Lisle (1985). The parameter I, 
related to the uniformity statistic of Mardia (1972), Su, 
defines the degree of isotropy: 

3 

1 = (15/2) ~" ( S  i - 1 / 3 )  2 

i=l (2) 

S u = l . n ,  

where n is the number of poles the sample and Si the 
normalized eigenvalues of the orientation tensor. The 
fabric is considered to be statistically non-isotropic when 
I exceed a given critical value. 

Once this decision procedure leads to recognition of 
fabric anisotropy, the degree of preferred orientation 
(the strength) can be adequately explained in terms of 
the C and I parameters. In addition both the strength 
and the shape of a given fabric can be graphically 
represented in a Woodcock diagram (Woodcock 1977, 
Woodcock & Nayior 1983). This can be considered as an 
equivalent to the Flinn diagram for deformation, but 
with the logarithmic eigenvalue ratios ln(S1/S2) and 
ln(S2/S3) as ordinate and abscissa, respectively. Simi- 
larly a K (shape) parameter is defined as K = 
In(Sl/Se)/ln(S2/S s), with the K = 1 line as a diagonal 
running from the bottom left to the right top of the 
diagram. The origin of the graph represents a spherical 
or isotropic fabric. Girdle distributions have K values 
lying between zero and unity, and cluster distributions 
plot in the K > 1 field. A third strength parameter could 
be defined as the distance between the origin of the 

Woodcock graph and the point marking the position of a 
particular orientation tensor. The resulting value is: 

S = {[ln (S,/Sz)] 2 + [ln ($2/$3)]2} lie (3) 

This expression is formally identical to that of the 
parameter D, suggested by Ramsay & Huber (1983) as a 
measure of the 'amount of deformation' recorded by a 
strain ellipsoid. Nevertheless S and D express values 
taken by the eigenvalues or by the principal plane strain 
ratios, respectively; therefore they should not be con- 
sidered as factors with an absolute significance (Ramsay 
& Huber 1983). No attempt to elaborate a decision test 
for isotropy based on S has been made in this work. 

The procedures outlined above are not strictly valid 
when applied to multimodal samples or to distributions 
with low internal symmetry (Woodcock 1977). How- 
ever, in our experience they provide an acceptable 
approximation to the randomness evaluation when deal- 
ing with those complex non-unimodal fabrics. 

Asymmetry 

Only when the anisotropic character of the c-axis 
sub-fabric is demonstrated should we pass to the follow- 
ing step in the method, i.e. to describe the fabric as 
pertaining to either a symmetric or an asymmetric point 
group. As stated in the Introduction the symmetry can 
be referred to some external axes or, independently 
from these, to internal symmetry operators as a measure 
of rotational invariance between different parts of the 
fabric. Some parametric tests have been proposed to 
evaluate this internal symmetry (e.g. Mardia 1972), but 
they are only relevant to axisymmetric distributions, and 
only once the sample was proved to correspond to a 
specific statistical distribution (generally the Bingham 
distribution). In orthorhombic and monoclinic fabrics 
the internal symmetry is characterized by several angu- 
lar parameters easily obtained from the skeletal outline 
(Behrmann & Platt 1982, Law 1987). 

The external symmetry is often defined with respect to 
the XYZ-axes of the finite strain ellipsoid. As shown by 
Simpson & De Paor (1993), the choice of foliation as a 
reference frame is not a problem when we only attempt 
to characterize the sense of rotation of the flow and not 
the numerical value of vorticity. In some cases the 
skeletal outline of the fabric can be unequivocally estab- 
lished and directly compared to that external frame. 
Otherwise we must look for additional criteria to ascer- 
tain the degree of external symmetry of the sample. An 
attempt to resolve this problem is presented in the 
following paragraphs. 

In Fig. l(a) a characteristic orthorhombic distribution 
is displayed (type I crossed-girdle pattern of Lister 1977, 
with internal symmetry: 2/m 2/m 2/m); this fabric is 
clearly symmetric, also with respect to the external 
XYZ-axes ,  because these axes coincide with the two- 
fold internal rotation axes (21,22, 23), while the principal 
planes of the strain ellipsoid correspond to mirror planes 
(ml, m 2, m3). This is an internal and external ortho- 
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Fig. 1. Extcrnal and internal symmetry elements in quartz c-axis 
crystallographic fabrics. (a) Type I crossed-girdle with orthorhombic 
external symmetry. (b) Single kinked girdle, monoclinic with respect 
to the X Y Z  frame. (c) Single maximum with axisymmetric internal 
symmetry and monoclinic external symmetry with respect to the X Y Z  
axes. Only the ~-fold rotation axis is shown.  (d) Quadrant  division of 
the projection hemisphere. (e) definition of the value and sign of angle 
d, with isolines every 15 °. Thin discontinuous line: ~-fold rotation 
axis; ellipses: two-fold rotation axes (21, 22, 23); heavy lines: mirror 
planes (m t , m2, m3); X Y Z :  principal axes of the finite strain ellipsoid. 

rhombic fabric, that is, a symmetric fabric. Figure l(b) 
shows a monoclinic fabric (single kinked girdle, with 
internal symmetry: 2/~) ,  asymmetric with respect to the 
XYZ-axes .  Here  only the Y-axis coincides with a binary 
axis (22); and the same situation holds with the planar 
elements, the IXZ] plane corresponding to m2. It is an 
internal and external monoclinic fabric, that is, an asym- 
metric fabric. Both models represent a large number of 
natural, experimental and modelled quartz c-axis fab- 
rics. In fact a direct correlation between internal and 
external symmetries in quartz c-axis fabrics can be 
inferred from data published to date (see e.g. Price 1985, 
Schmid & Casey 1986). Note, however that external 
asymmetry and internal symmetry is also possible, as 
when we find a single point maximum or a straight single 
girdle oblique to the external axes (Fig. lc). In these 
cases the proper rotation axes (o0, 2) and mirror planes 
(m) deviate from the X Y Z  finite strain axes and, as a 
consequence, internal axisymmetric distributions de- 
generate to monoclinic or perhaps triclinic external 
symmetries. The general condition for external sym- 
metry is the full coincidence of the external axes and the 
operators of internal symmetry. To discriminate be- 
tween external symmetry and asymmetry it is therefore 
merely necessary to check the statistical recurrence of a 
particular distribution of axial elements in a fabric when 
a rotation of 180 ° around the axes 21 and 23 (Xand Z), or 

(a) J 
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X 
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Fig. 2. Frequency linear histograms of a. (a) Sample 14W-10-16 of 
Compton (1980). Interval of classes, 5 °. A smoothing curve is also 
shown. (b) Normal distribution of means selected at random (right) 
from a non-nornal  population of d values (left), when the extension of 
the sample is large (n = 25); from Lapin in Davis (1986). (c) & (d) 
Position of A m  with respect to X for a symmetric (c), and an 

asymmetric fabric (d). See text for explanation. 

a reflection through the mirror planes m t and m 3 (1YZ] 
and ]XZ[), has been performed. Similar checking ro- 
tations could be proposed for axisymmetric fabrics (Fig. 
lc). 

When fabrics exhibit axisymmetric, orthorhombic or 
monoclinic distributions an accurate simulation of the 
rotations and reflections required to prove their external 
symmetry can be provided by first a division of the 
projection hemisphere into four quadrants according to 
the principal planes of the strain ellipsoid (Fig. ld) and 
second a comparison between the two quadrant pairs: 
first and third vs second and fourth. The equivalence 
condition between them can be expressed as a statistical 
comparison of pole distribution intensity, established 
not only on the number of poles, but also on their 
position inside each quadrant. Unfortunately, as far as 
we are aware, no testing procedure has been fully 
developed to account for this specific operation, 
although related topics are discussed in systematic trea- 
tises of statistical theory and methodology for spherical 
data (for a review see Fisher et al. 1987). A way to 
establish a simple numerical approximation to this com- 
parison could be made by the following approach. 

(1) The two angular co-ordinates describing the posi- 
tion of a pole with respect to the X Y Z  framework are 
transformed in a single angular value: 6. This is the acute 
angle between each c-axis and the X-axis of the strain 
ellipsoid. 6 takes a positive value when the pole is 
located inside the first and third quadrants, and a nega- 
tive value otherwise (Fig. le).  A typical distribution of 6 
values from a quartz c-axis fabric is shown in Fig. 2(a). 
This step converts spherical axial data into circular axial 
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data. The transition from the three Euler angles necess- 
ary to describe the orientation of one crystal in a com- 
plete fabric description to the two angles of a single sub- 
fabric and then to the circular distribution of 6 values 
seems to represent ordered steps of a progressive simpli- 
fying procedure,  and the Curie principle will govern the 
interpretations concerning symmetry in all stages. In the 
process only one dimension remains and the information 
concerning the exact position of each point or cluster of 
points within a given quadrant is reduced to a mere two- 
dimensional gradient from the X-axis to the IYZ[ plane 
(Fig. le).  As a result any information about the skeletal 
outline disappears, and only rough differences in distri- 
bution intensities between quadrants can be analysed 
(Fig. 2a). For instance~ a c-axis located near to Y will 
give the same d value than a c-axis close to Z (Fig. le).  A 
geometrical image for the significance of this process can 
be gained if the fabrics from Figs. l (a)- (c)  are super- 
posed onto the net in Fig. l(e).  Fabrics with external 
asymmetry (Figs. lb & c) must have more points within 
one of the quadrant pairs and therefore they will develop 
a statistical preference for positive or negative 6 values. 
In Bouchez (1977), Etchecopar (1977) and Lister & 
Hobbs (198(I) similar, but not identical, single angular 
values are obtained, and they are represented in a 
fashion that closely resembles our Fig. 2(a). 

(2) If the position of the X-axis (the zero direction) is 
perfectly established in the sample, the 6 values can be 
treated as corresponding to a linear distribution. The 
linear histogram in Fig. 2(a) is a graphical representation 
of this conversion. Additional information concerning 
the distribution of poles will not be lost during this stage. 
Provided that a sufficient number of poles are available 
(we will consider this aspect later), the central limit 
theorem makes it possible to use testing procedures 
based on the normal distribution to check different 
properties of the fabric (Fig. 2b). The linear distribution 
of ds in a sample can be described by various statistics, as 
for instance the arithmetic mean (Am) or the standard 
deviation (Sam). Here Am is considered as an authentic 
asymmetry factor, in fact Am is believed to lie close to O 
(the X axis position) when the fabric is symmetric (Fig. 
2c). In contrast, clearly asymmetric fabrics will have Am 
values statistically different from O, as deduced from its 
tendency towards positive or negative d values (Fig. 2d). 
A decision rule must be designed in order to constrain 
the significance of that deviation. The hypothesis--often 
referred to as a null hypothesis-- that  must be tested 
during the decision procedure is that the mean of the 
parent population from which the sample was obtained 
is equal to O; it is a testing against symmetry. Following 
standard procedures (Davis 1986) critical values of Am 
for the test are given by: 

Amc = ± t o , ~ 2  • S A m  • n 0.5, (4) 

where t,/2 is the value of the t distribution for a given 
level of significance (ct); SAm is the standard deviation of 
the sample, and n is the number of measured poles. 
Equation (4) separates an acceptance region bounded 
by the critical Am, values from a rejection field, outside 
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these critical values. When the Am for a particular 
sample fall within the rejection field the sub-fabric is said 
to show external asymmetry. If the position of X is 
unknown or dubious the simplification cannot be made, 
due to the lack of invariance shown by circular distri- 
butions when the origin is variable: when angular data 
(6) are treated in a linear form the value taken by some 
relevant descriptive measures like the arithmetic mean 
will strongly depend on the position of the zero direction 
(e.g. Mardia 1972). 

Loss of information about the location of c-axis max- 
ima or girdles can preclude the use of this method on 
very irregular triclinic fabrics, in particular when max- 
ima alternate so that the final result is external sym- 
metry. For an explanation the Curie principle may be 
again adduced: asymmetric distributions of 6 values 
imply asymmetric quartz c-axis sub-fabrics, but sym- 
metric distributions of bs do not necessarily imply sym- 
metric sub-fabrics. In a sense almost every natural 
quartz c-axis fabric can be considered as a triclinic fabric; 
fortunately they are far from the irregularity already 
mentioned and often keep a structural resemblance to 
monoclinic or orthorhombic distributions (see examples 
in Price 1985). 

Statistical obliquity 

As we have seen above and in pole figures with a 
well-defined skeletal outline, it is common to use angu- 
lar parameters as kinematic criteria. The external asym- 
metry is often described by the so-called obliquity angle, 
whose meaning is not clearly established and can be 
quite variable for different authors (e.g. Brunel 1980, 
Simpson 1980, Law 1987, 1990, Mancktelow 1987). 
Once again, when the fabric skeleton is not well marked 
it could be preferable to establish a factor based on more 
objective grounds. Let V l, V z and V 3 be the eigenvectors 
related to the three eigenvalues of the orientation ten- 
sor: S~, $2 and $3, respectively. Planes connecting the 
eigenvectors are here considered as the statistical skel- 
eton of the fabric. Depending on the K value of the 
sample, a statistical obliquity angle (at,) can be defined as 
in Fig. 3. For K < 1, i.e. when SI and S~ are both large 
and $3 small so that the orientation of plane ]V~V2] is 
fixed, afis the angle measured in the ]XZ] plane between 
the Z axis and the intersection of the planes ]XZ] and 
]v1v2L (Fig. 3, left). For K > 1, S~ and $3 are both small 
and the orientation of IV]V:I can be quite variable 
depending on slight fluctuations in the c-axis distri- 
bution. However,  V~ is fixed and consequently af is 
established as the angle between the planes IYZi and 
]V1Y] (Fig. 3, right). As usual X Y Z  are external refer- 
ence directions corresponding with the principal finite 
strain axes. A sign criterion for af is also shown in Fig. 3. 
In our experience only isotropic or very irregular tricli- 
nic distributions display anomalous orientation of the 
eigenvectors, reducing the reliability of af. The differ- 
ence between Am and c~f is clearcut: Am is a statistic 
based on a comparison in the distribution intensity 
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Fig. 3. Statistical obliquity angle af based on the computation of the 
orientation tensor eigenvectors. Definition and sign of af for fabrics 
with K < 1 (left) and K > 1 (right). Vj and V 2 are the eigenvectors 
related to the maximum and inlermediate eigenvalues, respectively. 

between parts of the fabric, and acts as a diagnostic tool 
for asymmetry; af is more a geometric factor indicating 
the tilting of the statistical skeleton with respect to the 
X Y Z  frame. 

The method just described allows us to describe the 
symmetric or asymmetric character of a quartz c-axis 
fabric. When the external asymmetry has been demon- 
strated in a non-isotropic fabric, the statistical obliquity 
angle may be used as a kinematic criterion once one has 
assumed a physical model of fabric development that 
indicates the sense of tilting that must result from a 
specific shear sense in non-coaxial flow. In order to test 
the viability of this procedure some examples of quartz 
c-axis fabrics from the literature will be analysed. They 
have the following characteristics. 

(a) They result from theoretical simulations, from 
experiments or from naturally deformed rocks. 

(b) In almost every sample the deformation history, 
the finite strain value, the developing conditions and the 
initial fabric are well established. 

(c) All the fabrics have been published in spherical 
projection and as pole representations, without isoden- 
sity contours. The fabrics were digitized, transformed to 
numerical computer files, and analysed through the 
procedures outlined above. 

(d) The figures corresponding to non-coaxial defor- 
mations were all standardized and digitized to represent 
a dextral shear sense. 

ASYMMETRY ANALYSIS OF NATURAL, 
THEORETICAL AND EXPERIMENTAL FABRICS 

Table 1 summarizes the sources of analysed fabrics 
and the statistical results. The fabrics have different 
deformation histories, either coaxial or non-coaxial. In 
an attempt to compare the deformation intensity with 
the degree of fabric isotropy, and with the asymmetry of 
pole distributions, the following parameters have been 
computed: D,I,C,S, Am and af. A complete description 
of each sample is given in the works mentioned in Table 
1. 

The decision concerning the iosotropy character was 
taken following both the Lisle (1985) and the Woodcock 
& Naylor (1983) tests. The results were invariably co- 

incident, and are expressed in Table 1. Minimum values 
of D,I,C and S belong to samples defined as isotropic. 

The results of the external asymmetry tests are also 
plotted in Table 1. The decision involves a level of 
significance of 0.01. Asymmetric fabrics clearly prevail 
for non-coaxial deformation paths. For these latter his- 
tories a striking coincidence between the increase in the 
strain intensity factor (D), the fabric strength para- 
meters (I,C,S), and the external asymmetry (Am) was 
found. These topics will be considered at length later in 
this section. The angle af separates fabrics with a dextral 
obliquity (positive) from those with a sinistral one (nega- 
tive). The largest obliquity values are also associated 
with the fabrics resulting from non-coaxial deformation 
histories. 

A better understanding of results in Table 1 can be 
gained if the principal relations among the statistical 
parameters are expressed in a graphical form. A brief 
account of these graphs is added in the following subsec- 
tions. 

Orientation tensor: shape evolutions and fabric strength 

The c-axis fabrics are plotted in logarithmic Wood- 
cock diagrams (Fig. 4). Fabrics derived from coaxial 
models based on the Taylor-Bishop-Hil l  (TBH) theory 
follow three different paths, according to their deforma- 
tional evolution: axisymmetric flattening, plane strain or 
axisymmetric extension (Fig. 4a). This statistical charac- 
terization shows the simplicity of single clusters (K ~- 00) 
formed during axial flattening, or that of perfect single 
girdles (K = 0) normal to X in axial extension (Price 
1985). The intermediate nature of the crossed girdles in 
plane strain is a somewhat more surprising result, the 
explanation of which is believed to lie in the essentially 
double-maximum or incomplete girdle distribution of c- 
axes along the I YZ I plane. These paths differ from those 
of non-coaxial deformation models that show convex 
upwards trajectories (Fig. 4b). The evolution from 
broad clusters (K > 1) in the first stages of shear strain, 
to crossed girdles (K = 1) and finally to sharp single 
girdles (K < 1) in the last episodes is the main inference 
to be extracted from the convex paths. 

In the fabrics derived from theoretical models there is 
a close relationship between the strain intensity factor 
(D) and the strength parameters (I,C,S) (Table 1), as 
was already noticed in the past (e.g. Lister et al. 1978, 
Dell 'Angelo & Tullis 1986). Isotropy is rejected for D 
values between 0.14 and 0.4 (Table 1). This implies a 
critical shortening of about 23% in axisymmetric flatten- 
ing, and shear strain values of around 0.57 for simple 
shear deformations. These results are slightly lower than 
values mentioned in the literature (e.g. Etchecopar 
1977, Lister & Hobbs 1980, Hobbs 1985, Jessell 1988b). 
A reduction in the strength of fabrics for high D values as 
predicted for instance by Lister & Hobbs (1980) or 
Hobbs (1985) is not obvious in some of our results for 
non-coaxial models, where a strong increase in I,C or S 
with D is particularly obvious (Table 1). However,  this 
should not be considered as a hint against the suggestion 
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269 

Strain history Fabric SOlIKe 
Asymmetry Obhquity 

Number* D 1 c‘ S Isotropy IAmi (~1 = 0.01) (nf): 

Coaxial models 
Initial fabric 

Axisymmetric flattening 

Axisymmetric extension 

Plane strain 

Axisymmetric flattening 

LH.1 

LH.6 
LH.7 
LH.8 
LH.9 
LH.10 
LH.2 
LH.3 
LH.4 
LH.5 
LH.ll 
LH.12 
LH.13 
LH.14 
LH. 15 
Run 5.No.O 
Run 5.No.3 
Run 5.No.7 
Run 5.No.15 
Run S.No.19 

Coaxial natural and experimental (see Price 1985) 
Axisymmetric flattening GB-177 

GE-174 
41504 

General flattening 14W-10-16 
14W-10-8 
14w-14-3 
IND-4 

Plane strain 066 
Q55 
Putney quartzite 
Q41 
41506 
051 

General extension Weverton quartzite 
Axisymmetric extension Cheshire quart&e 

Antietem quartzite 

Non-coaxial models (simple shear) 
Y = 0.2 LH.1 
;= 1.5 
y = 3.0 
y = 4.0 
y = 1.732 

y = 1.732 
y = 0.0 
y = 0.57 
y = 1.33 
y = 2.85 
y = 0.1! 
y = 0.57 
y = 1.33 
y = 2.85 
y = 0.0 
y = 0.57 
y = 1.33 
y = 2.85 
y = 0.0 
y = 1.71 
y = 3.61 
y = 5.51 
y = 5.0 
y = 5.0 
y = 5.0 
y = 5.0 
y = 5.0 

LH.5 
LH.7 
LH.8 
WEN.1 

WEN.2 
Run 1.No.O 
Run l.No.3 
Run l.No.7 
Run 2.No.15 
Run 2.No.O 
Run 2.No.3 
Run 2.No.7 
Run 2.No.15 
Run 3.No.O 
Run 3.No.3 
Run 3.No.7 
Run 3.No.15 
Run 4.No.O 
Run 4.No.9 
Run 4.No.19 
Run 4.No.29 
JL.a 
JL.b 
JL.c 
JL.d 
JL.e 

Non-coaxial natural and experimental 
General shear 1 

? 

3 
General shear SG. 1 

SG.2.1 
SG.2.2 
SG.2.3 
SG.2.4 
SG.2.5 
SG.3 
SG4. 

Experimental, simple shear BD.1 
(ice) BD.2 

BD.3 

Lister & Hobbs 
(1980)$ 
Model quart&c. B 
Model quartzite. B 
Model quartz&e. B 
Model quartzite. B 
Model quartzite. B 
Model quartzite. B 
Model quartzite. B 
Model quart&e. B 
Model quart&e. B 
Model quartzite. B 
Model quartzite. B 
Model quartzite. B 
Model quartzite. B 
Model quartzite. B 
Jesse11 (1988b) 
Jessell (1988b) 
Jesse11 (1988b) 
Jesse11 (1988b) 
Jessell (198Xb) 

Tullis (1977). exp. 
Tullis (1977)) exp. 
Dayan (1981) 
Compton (1980) 
Compton (1980) 
Compton (1980) 
Compton (1980) 
Mitra & Tullis (1979) 
Tullis (1977), exp. 
Tullis (1977) 
Tullis (1977) 
Dayan (1981) 
Tullis (1977). exp. 
Tullis (1977) 
Tullis (1977) 
Tullis (1977) 

Lister & Hobbs (1980) 
Lister & Hobbs (1980) 
Lister & Hobbs (1980) 
Lister & Hobbs (1980 
Wenk & Christie 
(1991)$ TBH 
Self-consistent 
Jessell (1988b) 
Jessell (1988b) 
Jessell (1988b) 
Jessell (1988b) 
Jessell (1988b) 
Jessell (1988b) 
Jesse11 (1988b) 
Jessell(1988b) 
Jesse11 (1988b) 
Jessell (1988b) 
Jessell (1988b) 
Jessell (198Rb) 
Jessell(1988b) 
Jessell (1988b) 
Jesse11 (1988b) 
Jessell (1988b) 
Jessell & Llster (1990)$: 
Jessell & Lister (1990)f 
Jesse11 & Lister (1990)f 
Jessell & Lister (1990)$ 
Jessell & Lister (1990)+ 

Mancktelow (1987) 
Mancktelow (1987) 
Mancktelow (1987) 
Law (1987) 
Law (1987) 
Law (1987) 
Law (1987) 
Law (1987) 
Law (1987) 
Law (1987) 
Law (1987) 
Bouchez & Duval in: 
Etchecopar & Vasseur 

(lY87)f 

I 0.00 0.02 0.23 0.16 Yes 
2 0.77 0.27 0.78 0.56 NO 
3 1.04 0.81 1.22 1.02 NO 
4 1.37 1.05 1.32 1.21 NO 
5 1.81 1.17 1.38 1.30 NO 
6 2.41 1.58 1.61 1.55 NO 
7 0.71 0.17 0.67 0.54 NO 
x 1.04 0.33 0.97 0.71 NO 
Y 1.31 0.43 1.15 0.88 NO 

10 2.29 0.69 1.68 1.64 NO 
II 0.72 0.28 0.77 0.58 NO 
12 0.98 0.43 1.05 0.74 NO 
13 1.30 0.61 1.28 0.91 NO 
1-l 1.70 1.02 1.71 1.21 NO 
15 2.28 0.99 1.66 1.17 NO 
16 0.00 0.02 0.18 0.17 Yes 

17 0.43 0.13 0.54 0.39 NO 
1X 1.01 0.57 1.02 0.85 NO 
10 1.57 0.90 1.27 1.09 NO 
20 2.66 2.44 2.12 2.04 No 

21 
22 
23 
24 
2s 
26 
27 
28 
29 
30 

:1 
33 
34 
35 
3h 

1.81 2.03 2.05 1.70 NO 2.10 NO 4.46 
1.08 0.78 1.22 0.98 NO 9.67 NO 8.89 
1.01 0.25 0.78 0.55 NO 3.47 NO 2.05 
0.95 0.44 1.18 0.94 No 5.98 NO 3.35 
1.06 0.41 1.14 0.95 NO 0.44 NO 4.13 
1.30 0.76 1.88 1.75 NO 4.02 NO 7.93 
2.07 1.99 4.96 4.09 NO 19.99 YEIS 13.78 
0.62 0.16 0.61 0.43 NO 3.7X NO 2.17 
0.98 0.64 1.35 0.96 NO 2 46 No 4.45 
0.83 0.61 1.26 0.89 NO 1.06 NO 1.11 
0.98 0.58 1.08 0.84 NO 9.52 NO 2.00 
1.32 0.54 1.38 1.28 NO 13.03 Yes 5.65 
1.55 0.48 0.92 0.79 No 5.59 NO 5.16 
1.09 0.62 1.37 1.00 NO 1.2’) NO 4.60 
0.97 0.60 1.41 1.07 No 6.23 No 4.41 
1.41 0.90 1.50 1.07 NO 12.13 Ye5 7.11 

37 0.14 0.02 0.20 0.17 Ye7 
3X 0.98 0.43 1.05 0.74 NO 
34 1.70 0.87 1.76 1.31 NO 
40 2.04 1.17 2.15 1.59 NO 

?I 1.11 1.66 2.72 1.99 NO 
42 1.11 1.60 2.98 2.28 NO 
43 0.00 0.02 0.17 0.12 Yes 
44 0.40 0.14 0.57 0.26 NO 
45 0.88 0.60 0.98 0.93 NO 
46 1.63 2.79 3.92 2.81 NO 
47 0.00 0.07 0.13 0.10 Yes 

4x 0.40 0.09 0.46 0.32 NO 
4’) 0.88 1.18 1.97 1.41 NO 
50 1.63 1.90 3.44 2.62 NO 
51 0.00 0.03 0.26 0.19 Yes 
52 0.40 0.16 0.58 0.44 NO 
53 0.88 0.68 1.06 0.96 NO 
s4 1.63 3.26 4.42 3.14 NO 
55 0.00 0.07 0.42 0.34 Yes 
56 1.10 0.58 1.14 0.84 NO 
57 1.91 2.25 3.20 2.29 NO 
5x 2.46 3.09 5.06 3.73 NO 
5’) 2.33 1.09 2.31 1.84 NO 
60 2.33 1.54 2.97 2.30 NO 
61 2.33 0.83 1.95 1.65 NO 
62 2.33 0.62 1.45 1.11 No 
63 2.33 3.94 4.32 3 14 NO 

64 - 0.84 2.07 2.00 
65 - 1.11 2.93 2.66 
66 - 1.14 2.81 2.44 
67 - 0.79 1.92 1.73 
6X - 0.55 1.39 1.36 
69 - 0.50 1.32 1.13 
70 - 0.62 1.52 1.24 
71 - 0.64 1.57 1.31 
72 - 0.49 1.28 1.02 
73 - 0.64 1.60 1.50 
74 - 0.58 1.46 1.23 
75 0.42 1.27 1.93 1.36 
76 0.65 1.04 1.50 1.43 

77 1.25 2.32 2.43 1.84 

NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

NO 

3.69 NO 
0.81 NO 
3.58 NO 
4.36 No 
5.03 No 
4.30 NO 
5.77 NO 
3.37 NO 
2.11 NO 
0.92 No 
1.82 NO 
0.59 NO 
1.58 NO 
0.39 NO 

- 
-1.39 
-0.46 
-2.89 

0.82 
0.40 

-1.70 
0.72 

-0.64 
-0.68 
-4.69 

2.45 
-2.4 
-0.25 

-11.13 

3.54 NO 5.22 
4.19 NO -4.27 
6.27 NO 4.96 
2.21 NO -0.05 

4.85 NO -1.07 
23.66 Yes -9.79 

26.77 Yes -12.30 

48.76 Yes 11.23 
44.50 Yes 11.56 

1.78 NO 
7.98 NO 

69.41 Yes 

- 

-17.76 
-7.04 
13.67 

1.66 NO 
12.97 NO 
21.98 NO 

- 

-8.68 
-7.37 

1.25 

5.46 NO -7.84 
IX.56 Yes 4.92 

73.33 Yes 16.54 

0.63 NO -6.; 
45.28 Yes 5.80 
66.49 Yes 6.18 
58.97 Yes 9.13 
70.44 Yes 10.34 
40.96 NO ii.30 
20.97 No 16.39 
12.14 NO X.16 

24.00 Yes 11.91 
30.32 Yes 14.70 
28 27 Yes 9.90 
24.22 Yes 16.44 
14.21 Yes 6.87 
17.07 YtX 13.18 
23.49 Yes 12.11 
21.80 Yes 12.96 
16.57 Yes 8.69 
5.20 NO 0.86 
8.16 No 2.1 
9.52 NO X.12 
9.32 NO 2.19 

4X.27 Ye5 21.56 

*This field refers to the number assigned to the fabrxs in this work. 
tDextral obliquity: positive; sinistral obliquity: negative. 
$The following fabrics are not specifically labelled by the authors. Lister & Hobbs (1980, fig. 8), their fabrics are here numbered from the less to the more deformed 

ones. within a given strain field. Wenk & Christie (1991. fig. 9). Jessell & Lister (1990. fig. 3); from low to high temperatures. Bouchez & Duval in Etchecopar & 
Vasseur (1987, fig. 7b). 
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Fig. 4. Modelled fabrics plotted in Woodcock diagrams. The numbers indicated are those listed in Table 1. (a) Coaxial 
models. Lister & Hobbs (1980), black circles; Jessell (1988b), open circles (Run 5). (b) Non-coaxial models. Lister & Hobbs 

(1980), black circles (Model B); Jessell (1988b), small open circles (Runs 1-4). 

of Wenk & Christie (1991) that the fabrics with maxima 
representing a dynamic state (developed in simple shear 
as an example) never become very intense: it is import- 
ant to realize that the disappearance of a leg in a crossed- 
girdle pattern can induce a marked increase in the 
strength of a fabric, especially when factors based on 
eigenvalue computation are used. In fact the higher 
fabric intensities occur when external asymmetry is 
reached (Table 1). 

Asymmetry and obliquity 

For coaxial deformations the Am parameter is con- 
stant when the deformation intensity (D) increases 
(Table 1). In non-coaxial deformations Am evolves in a 
very different way: the first shearing stages produce 
symmetric fabrics that become asymmetric when y 
(shear strain) increases above a certain value (Schmid & 
Casey 1986).The critical shear strain is a prime function 
of the model considered, and seems to be larger when 
the model attempts to simulate higher temperature 
deformation (Run 2 of Jessel11988b, or fabrics 'd' and 'e' 
in fig. 3 of Jessell & Lister 1990). An explanation for this 
may be that high temperatures induce a strong accumu- 
lation of poles near the Y-axis, so that the distribution of 
6s moves towards + 90 °. An increase in symmetry 
follows. The linear histograms show different patterns 
when fabrics resulting from coaxial or non-coaxial defor- 
mations are considered. In the first case two symmetric 
maxima are defined (Fig. 5a), while in the second, one 
maximum comes to dominate over the other (Fig. 5b), 
which eventually vanishes when D is high enough (cf. 
Bouchez & PEcher 1976, Etchecopar 1977). Several 
models of non-coaxial c-axis fabric development here 
are analysed. They correspond to simple-shear defor- 
mation and are essentially based on the TBH theory 
(Lister & Hobbs 1980, model B), although more com- 
prehensive models based on the combination of lattice 
rotations following the TBH theory and recrystallization 
processes are also considered (Jessell 1988a,b, Jessell & 
Lister 1990). Finally the viscoplastic approach ofWenk et 
al. (1989) and Wenk & Christie (1990) was checked as 

well. Relative values of critical resolved shear stress 
(CRSS) for the main slip systems in quartz, grain bound- 
ary mobilities and recovery rates are the main input 
parameters in the TBH models. The possibility that 
different models could lead to contrasted 6 distributions 
or perhaps to opposite af values for the same bulk shear 
sense is a central point in this work. When natural and 
experimental non-coaxial fabrics are analysed (Table 1, 
numbers 64-77) Am is often large and af is positive for 
dextral shear, although the fabrics are not necessarily a 
consequence of simple-shearing histories, and may in- 
volve besides a component of coaxial flow (e.g. Law 
1987). In the models by Lister & Hobbs (1980) where 
recrystallization processes are not considered, distinct 
fabrics are obtained depending on the CRSS values: 
Models A and B with a predominant basal (a/slip system 
develop very similar linear intensity distributions (cf. 
rose-diagrams in figs. 12 and 13 of Lister & Hobbs 1980). 
A maximum of intensity in the quadrant pair opposite to 
the imposed shear sense results, and consequently ctf has 
negative values for asymmetric fabrics under dextral 
shearing (Table l ,  fabrics 39 and 40; here only Model B 
was studied). The same discrepancy was shown by 
Bouchez et al. (1983), but see also Simpson (1980), 
Garcia Celma (1982), Simpson & Schmid (1983) and 
Mancktelow (1987) for additional discussions. Model C 
of Lister & Hobbs (1980) with simultaneous predomi- 
nant activity of basal (all and prism ia) slip systems exhibit 
more evenly populated quadrants (cf. Lister & Hobbs 
1980, Fig. 14). In contrast, models which combine the 
predictions of the TBH theory with recrystallization 
(Jessell 1988b, Jessell & Lister 1990) invariably produce 
positive obliquity for asymmetric fabrics (Fig. 5b and 
Table 1). This is so with independence of the active slip 
systems, work hardening rate or dynamic recovery rate. 
Similar results are obtained for the viscoplastic TBH or 
viscoplastic self-consistent models (numbers 41 and 42 in 
Table 1). Note, however, in Table 1 that af attains 
negative values during the first deformational stages 
when the fabrics are still symmetrical. This could be 
interpreted as a consequence of the c-axis kinematics in 
the early stages of fabric development (see e.g. Jessell 
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Fig. 5. Linear histograms of 6 values for different selected model sequences. Interval of classes: 5 °. A smoothing curve is 
added to each histogram. (a) Axisymmetric flattening, Run 5 of Jessell (1988b). (b) Simple shear, Run 3 of Jessell (1988b). 
(c) Shear sense for non-coaxial deformation, and 6 sign criterion in terms of the quadrant  division. D represents the value of 
the finite strain intensity. Numbers in italics refer to the fabric numbers in Table 1. The distribution is statistically isotropic 

(random) in fabrics 16 and 51. 

1988a, Wenk et al. 1989). The coincidence with natural 
and experimental fabrics tend to support the intensity 
distributions attained by models with coupled lattice 
rotations and dynamic recrystallization, such as that of 
Jessell (1988b) and Jessell & Lister (1990), in which af is 
positive for dextral shear (Fig. 5b). Following the pro- 
cedure outlined in the previous section, the af angle for 

the fabrics with proven external asymmetry appears to 
be a reliable kinematic criterion. 

When we plot the obliquity angle with respect to D, 
we find that the variation is small and oscillatory (be- 
tween -+ 5 °) for coaxial deformations, ctf decreasing 
towards 0 ° when the deformation increases (Fig. 6a). In 
non-coaxial paths the obliquity exceeds significantly the 
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Fig. 6. af evolution with deformation. (a) Coaxial models. Lister & Hobbs (1980): open circles (axisymmetric flattening); 
triangles (plane strain); rhombs (axisymmetric extension). Jessell (1988h): filled stars (Run 5). (b) Non-coaxial models. 
Lister & Hobbs (1980): Model B. Jessell (1988b): Runs 1-4. Jessel[ & Lister (1990): open circles. Wenk & Christie (1991): 
centered circles. The inset shows the shear sense in non-coaxial deformations. Asterisks indicate the asymmetric fabrics 

according to the A m  test. See Fig. 3 for the af sign criterion. 
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Table 2. Results of the empirical fitting of the critical external asym- 
metry factor in terms of n (number  of poles). The general fitting 
equation has the form: 

IAm~.l = a • n~; n > 2110; Am in absolute value 

Level of significance Correlation 
(~) a b coefficient 

0.1 103.98 -0 .484  0.90 
0.05 130.72 -0 .494  0.90 
0.01 171.38 -0 .494  0.90 

+ 5 ° limit (Fig. 6b) and once the external asymmetry is 
achieved ctf is high, and its sign agrees with the imposed 
shear sense in the manner already discussed (except for 
the samples 37-40). Inspection of Fig. 6(b) suggests that 
for basal (a) slip controlling the fabric development and 
for a given D value, high recrystallization rates (Runs 1 
and 3) promote larger positive obliquities and asymme- 
tries than those obtained when the grain boundary 
mobility is restricted (Run 4). As shown before, the Am 
test reveals symmetry in models simulating higher tem- 
peratures (larger activity of the prism (a) slip system) 
even if considerable recrystallization rates are intro- 
duced (Run 2). Lower af values are also developed for 
higher temperatures assuming the same recrystallization 
activity (compare Runs 1 and 2). 

A graphical way of determining external symmetry in 
quartzites: the Am/n graph 

Equation (4) was applied to all the samples in Table 1, 
and the Amc critical values were computed and plotted 
in terms of the number of poles (n). Three different 
levels of significance were considered (Figs. 7a-c). For n 
> 200 the plots show a good fit with the curve defined by 
equation (4) (Table 2). No significant differences can be 
measured between fabrics generated by natural, experi- 
mental or theoretical processes and they are not dis- 
tinguished in Fig. 7. The a coefficient in Table 2 is a 
direct function of SAm and indicates a remarkable homo- 
geneity between fabrics in the standard deviation of 6 
values for a given level of significance. Note in Table 2 
the proximity of the b coefficient to its theoretical value 
in equation (4): - 0.5. The acceptable fit between the 
empirical data and the equation (4) seems to be good 
support for the analytical assumptions followed in the 
method. In Fig. 7(d) the three critical curves are rep- 
resented in a single Am/n graph; these curves allow 
direct estimation of the asymmetry of fabrics in quartz- 
ites. The pattern with vertical lines in Fig. 7(d) indicates 
the field of external symmetric fabrics for a significance 
level (~t) equal to 0.1. Similarly the fields below the 0.05 
and 0.01 curves are the regions of external symmetry for 
significance levels equal to 0.05 and 0.01, respectively. 
The area above the curves is the region of asymmetry for 
each specific level of significance, so the region with light 
gray pattern marks the rejection field for a = 0.01. When 
n < 200 the value of the correlation coefficient is con- 
siderably reduced, so this is the critical minimum num- 
ber of poles to be measured in order to apply the 
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Fig. 7. Critical values of  the asymmetry factor, Am, for all the studied 
fabrics. (a) Significance level (a): 0.01. (b) a = 0.05. (c) a = 0.1. (d) 
Curves of Am critical values obtained from (a), (b) and (c) and fo rn  > 
200 (see Table 2). Areas  with n < 200 are marked with discontinuous 

curves. See text for explanation. 

method, at least from a statistical perspective. The area 
of discontinuous lines in Fig. 7(d) corresponds exactly to 
the n < 200 condition. This recommended minimum 
number of points must represent an equivalent number 
of different original grains, as in the models here ana- 
lysed, where the initial orientation population is always 
isotropic (Table 1). In a recent paper Lloyd et al. (1992) 
discuss the crystal fabric evolution in a quartzo- 
feldspathic mylonitic shear zone from Torridon (Scot- 
land), showing how a large number of recrystallized 
grains could represent only a few dozen parent grains. In 
this case the prerequisite of initial isotropic fabric is 
seldom fulfilled, and an erroneous shear sense may be 
deduced from Am and af when 200 recrystailized grains 
are measured in a limited area corresponding perhaps to 
the one individual original grain. Meso- and microstruc- 
turai observations are essential to ascertain whether the 
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Fig. 8. Am/n diagrams of natural and experimental Quartz c-axis 
fabrics. (a) Coaxial examples. (b) Non-coaxial examples. See sample 

sources in Table 1. 

original constraints of a given method of fabric analysis 
are violated, and the method needs to be applied with 
care. 

The A m  values of natural and experimental fabrics in 
Table 1 are plotted against n (Fig. 8). Coaxial fabrics 
displays small A m  values (Fig. 8a), however the samples 
27 (IND-4, Compton 1980), 32 (41506, Dayan 1981) and 
36 (Antietem quartzite, Tullis 1977) show external 
asymmetry, and possibly point to a non-coaxial history 
(see Price 1985, p. 399, for a discussion of IND-4). In 
contrast non-coaxial fabrics fall well within the asym- 
metric field (Fig. 8b). Only four samples could be 
considered as symmetric for a very exigent level of 
significance (a = 0.01): samples 73 and 74 (SG.3 and 
SG.4 of Law 1987) correspond to a sub-simple shearing 
deformation (De Paor 1983), with a dominant coaxial 
component. Samples 75 and 76 represent the first stages 
of an experimental simple shearing history in ice, with 7 
< 1 .  

The significance of the critical curves is essentially 
empirical, as the values of the a and b coefficients in 
"Fable 2 were obtained from a number of real or com- 
puted fabrics. However, the nature of the pole figures 
analysed (well-defined diagrams with known deforma- 
tional histories) and the identical results achieved from 
the diverse sources (natural, experimental and theoreti- 
cal) give confidence in the use of the Am/n  graph. 

DISCUSSION AND CONCLUSIONS 

Theoretical, experimental and natural quartz c-axis 
fabrics that develop during a single event of intense 

deformation, and in monomineralic aggregates, usually 
display a well-defined skeletal outline. The skeleton can 
be modified during the last episodes of a long and 
complex deformation history, while the distribution 
intensity does not apparently alter to the same degree 
(Lister & Williams 1979, Behrmann & Platt 1982, Pass- 
chier 1983). The presence of additional mineral phases 
often makes fabric interpretation difficult (Starkey & 
Cutforth 1978, White etal. 1980, Miller & Christie 1981, 
Passchier 1983, Lisle 1985). In addition the study of 
CPOs originating during heterogeneous deformation is 
by no means easy (e.g. Garcia Celma 1982, Law 1987), 
and it is necessary to make a large number of fabric 
determinations (Bouchez et al. 1983). 

The method described here aims to decipher a variety 
of aspects of complex fabrics, such as their asymmetrical 
nature with respect to an external reference frame. 
Nevertheless some restrictions must be taken into 
account when attempting to compute the A m  and af 
parameters in a c-axis sub-fabric. 

(1) A quartz c-axis pole figure is only a sub-fabric of 
the whole crystallographic orientation. Therefore the 
symmetry of the whole CPO is not proven through the 
mere determination of the symmetry of a single sub- 
fabric. Fortunately asymmetric c-axis fabrics imply 
asymmetric CPOs and therefore non-coaxial flow pat- 
terns, provided original isotropy and a steady defor- 
mation history. 

(2) This method is a linear bidimensionai approach. 
As a consequence information is lost concerning the 
particular position of maxima and only statistically sig- 
nificant differences between quadrants in the projection 
can be analysed. Very irregular triclinic fabrics may give 
misleading estimations when analysed on these grounds. 

(3) The external reference frame must be well estab- 
lished because a shift in the position of the X-axis (zero 
direction) can greatly affect the A m  estimation. 

(4) The statistical obliquity (a 0 can be read as a shear 
sense indicator when models based on the combination 
of TBH theory and recrystallization processes, or vis- 
coplastic behaviours, are considered. Compatibility 
with natural fabrics is good, in spite of deviation from 
simple-shearing flow that seems to be common in natu- 
ral shear zones. In contrast models considering only the 
TBH theory may exhibit opposite obliquity angles. 
Clearly more data are needed from new theoretical 
models approaching sub-simple shearing and accounting 
for a larger variety of intrinsic factors (Hobbs 1985) 
before a more general validity can be attributed to A m  
and af. 

(5) To obtain reliable results it is advisable to measure 
at least 200 poles per sample. Meso- and microstructural 
criteria must be used to help decide the optimum sam- 
pling scheme, which can be very variable depending on 
the specific geological situation. 

The A m  and af computations in several published 
c-axis pole figures seem to reflect the observed fabric 
evolution accurately. The combination of both para- 
meters constitutes a reliable new kinematic criterion 
under the conditions discussed before. Critical values of 
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A m  can be represented graphically and constitute a 
rapid way to the evaluation of asymmetry in quartzites. 

The method has been also applied by Fern~indez- 
Rodrfguez (1991) to check the statistical symmetry of 
more than 200 quartz c-axis fabric diagrams belonging to 
a regional shear zone. As distinct from theoretical 
models, deformation history is sub-simple shearing and 
rocks are inhomogeneous polymineralic aggregates, 
mostly gneissic. Accordingly the pole figures are more 
vague than in the fabrics here analysed and the skeleton 
outline is seldom sharp. Seventy per cent of fabrics with 
external asymmetry showed an obliquity angle compat- 
ible with the bulk movement in the shear zone. This 
percentage agrees with the results in other studies (Pass- 
chier 1983, Law et al. 1984). The 30% of asymmetric 
fabrics with contrary af are believed to be a consequence 
of the inhomogeneous flow pattern as they are more 
represented in the boundaries of the shear zone, where 
coaxial flow predominates and meso- and microstruc- 
tural indicators are inconclusive or even opposite. In this 
case the Arn/ct t method could provide some insight in 
deciphering vague quartz c-axis fabrics from gneissic 
rocks. Nevertheless, as indicated before, more compre- 
hensive models are needed, specially to simulate hetero- 
geneous sub-simple flow in complex polymineralic 
aggregates. 

A quantitative comparison among fabrics can also be 
attempted. For instance, the highest increase in A m  with 
respect to D is found in the Runs 1 and 3 of Jessell 
(1988b) (Table 1); meanwhile in Run 2 or in the high- 
temperature simulations of Jessell & Lister (1990), A m  
does not reach the critical value for symmetry rejection. 
These observations are consistent with those of Garcfa 
Celma (1982) and Schmid & Casey (1986) in the sense 
that the quartz c-axis fabrics with a single maximum 
close to the Yaxis do not give a good kinematic criterion. 

In order to compare the asymmetry parameters based 
on the definition of the skeletal outline with A m  and ctf 
we have investigated eight c-axis fabrics measured by 
Law (1987) in his study of the Moine Thrust at the Stack 
of Glencoul (Assynt mylonites). Two external asym- 
metry factors are used by Law: first the obliquity of the 
'central girdle segment with respect to the foliation 
trace' (Law 1987, angle ~p): second the angles c~ and c 2 
between the Z strain axis and the leading and trailing 
peripheral legs of the fabric skeleton, respectively. We 
computed also the A m  and c~f parameters of these 
fabrics. As Law has shown, the asymmetry increases 
towards the thrust plane (Table 1 and Fig. 9a). The 
change in ~ with respect to A m  or ctf has the following 
significance (Figs. 9b & c): the path from SG.3, statisti- 
cally symmetric, to SG.4, slightly asymmetric, involves a 
decrease in ~v, that is to say, an increase in the skeleton 
asymmetry (Fig. 9d, left and central sketches). A mini- 
mum value of ~p is reached (sample SG.2.1), and after- 
wards ~, shows a direct correlation with A m  or af, i.e. the 
central girdle segment has a tendency to be reoriented 
normal to the XYplane of the finite strain ellipsoid when 
the statistic asymmetry ( A m  and af) becomes more and 
more intense, or, in other words, the skeleton symmetry 
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Fig. 9. (a) Variation of A m  and % beneath the Moinc Thrust at the 
Stack of Glencoul (Scotland). Samples measured by Law (1987). 
Inset: equivalence between the fabric numbers in Table 1 and the 
Law's labels. (b) & (c) Relationships between the angle 4' describing 
the external asymmetry of the fabric skeleton (Law 1987) and the A m  
and af factors for the same samples. (d) Schematic representation of 
the evolution of these fabrics in terms of the skeleton-based 0P) and 
distribution intensity-based (Am and Czf) parameters. See text for 

further details and discussion. 

defined by ~p is larger in the more asymmetric fabrics 
than in the ones representing the first stages of statistical 
asymmetry (Fig. 9d, right and central sketches, respect- 
ively). This is a somewhat surprising result, whose 
explanation is well beyond the limits of this work. The 
results agree with Law's statement that "SG. 1 and SG.2 
are strongly asymmetrical with respect to foliation and 
lineation, both in terms of intensity distribution and, to a 
lesser extent, skeletal outline'*. It seems that, in fact, the 
A m  and ctf parameters are quite sensitive to progressive 
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tendencies towards asymmetry present in some natural 
rocks. Therefore, when the evaluation of the external 
asymmetry degree of quartz c-axis fabrics in a shear zone 
is attempted, the measure of skeleton-based angles can 
be satisfactorily completed with the computation of the 
A m  and af parameters. 

In conclusion the method outlined in this work is 
thought to describe numerically a variety of aspects of 
the external asymmetry and obliquity of quartz c-axis 
fabric diagrams. The simplicity of the method, and its 
numerical character can be useful in the study of single 
fabrics and in the comparison of a large number of 
complex fabrics coming from different sources. 
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